Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
Talanta ; 274: 126000, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38608630

RESUMO

Luminescent ß-diketonate-europium(III) complexes have been found a wide range of applications in time-gated luminescence (TGL) bioassays, but their poor water solubility is a main problem that limits their effective uses. In this work we propose a simple and general strategy to enhance the water solubility of luminescent ß-diketonate-europium(III) complexes that permits facile synthesis and purification. By introducing the fluorinated carboxylic acid group into the structures of ß-diketone ligands, two highly water-soluble and luminescent Eu3+ complexes, PBBHD-Eu3+ and CPBBHD-Eu3+, were designed and synthesized. An excellent solubility exceeding 20 mg/mL for PBBHD-Eu3+ was found in a pure aqueous buffer, while it also displayed strong and long-lived luminescence (quantum yield φ = 26%, lifetime τ = 0.49 ms). After the carboxyl groups of PBBHD-Eu3+ were activated, the PBBHD-Eu3+-labeled streptavidin-bovine serum albumin (SA-BSA) conjugate was prepared, and successfully used for the immunoassay of human α-fetoprotein (AFP) and the imaging of an environmental pathogen Giardia lamblia under TGL mode, which demonstrated the practicability of PBBHD-Eu3+ for highly sensitive TGL bioassays. The carboxyl groups of PBBHD can also be easily derivatized with other reactive chemical groups, which enables PBBHD-Eu3+ to meet diverse requirements of biolabeling technique, to provide new opportunities for developing functional europium(III) complex biolabels serving for TGL bioassays.

2.
Nucleus ; 15(1): 2310452, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38605598

RESUMO

The nuclear envelope (NE) separates translation and transcription and is the location of multiple functions, including chromatin organization and nucleocytoplasmic transport. The molecular basis for many of these functions have diverged between eukaryotic lineages. Trypanosoma brucei, a member of the early branching eukaryotic lineage Discoba, highlights many of these, including a distinct lamina and kinetochore composition. Here, we describe a cohort of proteins interacting with both the lamina and NPC, which we term lamina-associated proteins (LAPs). LAPs represent a diverse group of proteins, including two candidate NPC-anchoring pore membrane proteins (POMs) with architecture conserved with S. cerevisiae and H. sapiens, and additional peripheral components of the NPC. While many of the LAPs are Kinetoplastid specific, we also identified broadly conserved proteins, indicating an amalgam of divergence and conservation within the trypanosome NE proteome, highlighting the diversity of nuclear biology across the eukaryotes, increasing our understanding of eukaryotic and NPC evolution.


Assuntos
Membrana Nuclear , Trypanosoma , Humanos , Membrana Nuclear/metabolismo , Poro Nuclear/metabolismo , Saccharomyces cerevisiae/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Trypanosoma/metabolismo
3.
J Adv Res ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38609051

RESUMO

The multicellular trichomes of cucumber (Cucumis sativus L.) serve as the primary defense barrier against external factors, whose impact extends beyond plant growth and development to include commercial characteristics of fruits. The aphid (Aphis gossypii Glover) is one of prominent pests in cucumber cultivation. However, the relationship between physical properties of trichomes and the aphid resistance at molecular level remains largely unexplored. Here, a spontaneous mutant trichome morphology (tm) was characterized by increased susceptibility towards aphid. Further observations showed the tm exhibited a higher and narrower trichome base, which was significantly distinguishable from that in wild-type (WT). We conducted map-based cloning and identified the candidate, CsTM, encoding a C-lectin receptor-like kinase. The knockout mutant demonstrated the role of CsTM in trichome morphogenesis. The presence of SNP does not regulate the relative expression of CsTM, but diminishes the CsTM abundance of membrane proteins in tm. Interestingly, CsTM was found to interact with CsTIP1;1, which encodes an aquaporin with extensive reports in plant resistance and growth development. The subsequent aphid resistance experiments revealed that both CsTM and CsTIP1;1 regulated the development of trichomes and conferred resistance against aphid by affecting cytoplasmic H2O2 contents. Transcriptome analysis revealed a significant enrichment of genes associated with pathogenesis, calcium binding and cellulose synthase. Overall, our study elucidates an unidentified mechanism that CsTM-CsTIP1;1 alters multicellular trichome morphology and enhances resistance against aphid, thus providing a wholly new perspective for trichome morphogenesis in cucumber.

4.
Front Immunol ; 15: 1335473, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533496

RESUMO

Differentiated embryo-chondrocyte expressed gene 2 (DEC2) is a member of the basic helix-loop-helix (bHLH) subfamily of transcription factors. DEC2 is implicated in tumor immunotherapy, immune system function regulation, and autoimmune diseases. DEC2 enhances Th2 cell differentiation by regulating the IL-2 and IL-4 signaling pathways and mediates the growth of B-1a cells, thereby promoting the occurrence and development of inflammatory responses. In this study, we review the reported roles of DEC2, including the regulation of immune cell differentiation and cytokine production in various cells in humans, and discuss its potential in treating autoimmune diseases and tumors.


Assuntos
Doenças Autoimunes , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Humanos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Condrócitos/metabolismo , Fatores de Transcrição/metabolismo , Expressão Gênica
5.
J Environ Manage ; 355: 120402, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38428183

RESUMO

Interactions of microplastics (MPs) biofilm with antibiotic resistance genes (ARGs) and antibiotics in aquatic environments have made microplastic biofilm an issue of keen scholarly interest. The process of biofilm formation and the degree of ARGs enrichment in the presence of antibiotic-selective pressure and the impact on the microbial community need to be further investigated. In this paper, the selective pressure of ciprofloxacin (CIP) and illumination conditions were investigated to affect the physicochemical properties, biomass, and extracellular polymer secretion of polyvinyl chloride (PVC) microplastic biofilm. In addition, relative copy numbers of nine ARGs were analyzed by real-time quantitative polymerase chain reaction (qPCR). In the presence of CIP, microorganisms in the water and microplastic biofilm were more inclined to carry associated ARGs (2-3 times higher), which had a contributing effect on ARGs enrichment. The process of pre-microplastic biofilm formation might have an inhibitory effect on ARGs (total relative abundance up to 0.151) transfer and proliferation compared to the surrounding water (total relative abundance up to 0.488). However, in the presence of CIP stress, microplastic biofilm maintained the abundance of ARGs (from 0.151 to 0.149) better compared to the surrounding water (from 0.488 to 0.386). Therefore, microplastic biofilm act as abundance buffer island of ARGs stabilizing the concentration of ARGs. In addition, high-throughput analyses showed the presence of antibiotic-resistant (Pseudomonas) and pathogenic (Vibrio) microorganisms in biofilm under different conditions. The above research deepens our understanding of ARGs enrichment in biofilm and provides important insights into the ecological risks of interactions between ARGs, antibiotics, and microplastic biofilm.


Assuntos
Microplásticos , Plásticos , Genes Bacterianos , Rios , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Ciprofloxacina , Água , Biofilmes
6.
Se Pu ; 42(3): 304-308, 2024 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-38503708

RESUMO

To solve the problems of the lack of property research in organic synthesis experiments and the relative independence of instrumental analytical methods in experiments, we designed a comprehensive undergraduate experiment based on mechanofluorochromic materials. In this project, 4-[bis(4-methylphenyl)amino] benzaldehyde was synthesized via the Vilsmeier-Haack reaction using 4,4'-dimethyltriphenylamine as the raw material. The product was then characterized by mass spectrometry, infrared absorption spectroscopy, and nuclear magnetic resonance spectroscopy. The solvatofluorochromism and mechanofluorochromism of the target material were studied using ultraviolet-visible absorption spectroscopy, fluorescence spectroscopy, etc. Furthermore, the mechanism of mechanofluorochromism was determined using powder X-ray diffraction. Organic synthesis and a series of instrumental analytical methods were combined to form an integrated experiment. The experiment is interesting, scientific, and comprehensive for undergraduates as a creative exercise; moreover, it can inspire their interest in chemical research, cultivate a variety of experimental operation abilities, improve creative-thinking skills, and encourage the development of effective solutions to existing problems in chemical experiments.

7.
Talanta ; 274: 125982, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38554483

RESUMO

Hydrogen sulfide exhibits crucial functions in many biological and physiological processes. The abnormal levels of H2S have been revealed to be associated with numerous human diseases. The majority of existing fluorescent probes toward H2S may still need to be improved in terms of single output signal, water solubility, biotoxicity and photostability. The construction of a ratiometric fluorescent probe based on metal complex is one effective strategy for avoiding the mentioned problems for precisely detecting H2S. Herein, we report an iridium(III) complex-based ratiometric luminescence probe (Ir-PNBD), which is designed by coupling the 7-nitro-2,1,3-benzoxadiazoles (NBD) to one of the bipyridine ligands of Ir (III) complex luminophore through a piperazition moiety. Ir-PNBD owns high selectivity and sensitivity toward H2S, and an excellent ability to target mitochondria. Moreover, Ir-PNBD was further successfully utilized to visualize exogenous and endogenous H2S in HeLa cells and zebrafish. Our work offers new opportunities to gain deeper insights into the construction of transition metal complex-based ratiometric luminescent probes and expands their applications in biomedical imaging and disease diagnosis.

8.
Clin Transl Oncol ; 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38217684

RESUMO

PURPOSE: Breast cancer (BC) is a devastating disease for women. Microbial influences may be involved in the development and progression of breast cancer. This study aimed to investigate the difference in intestinal flora abundance between breast cancer patients and healthy controls (HC) based on previous 16S ribosomal RNA (rRNA) gene sequencing results, which have been scattered and inconsistent in previous studies. MATERIALS AND METHODS: In agreement with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), we searched for pertinent literature in Pubmed, Embase, Cochrane Library, and Web of Science databases from build until February 1, 2023. Relative abundance, diversity of intestinal microflora by level, microbial composition, community structure, diversity index, and other related data were extracted. We used a fixed or random effects model for data analysis. We also conducted funnel plot analysis, sensitivity analysis, Egger's, and Begg's tests to assess the bias risk. RESULTS: A total of ten studies involving 734 BC patients were enrolled. It was pointed out that there were significant differences in the Chao index between BC and HC in these studies [SMD = - 175.44 (95% CI - 246.50 to - 104.39)]. The relative abundance of Prevotellaceae [SMD = - 0.27 (95% CI - 0.39 to - 0.15)] and Bacteroides [SMD = 0.36 (95% CI 0.23-0.49)] was significantly different. In the included articles, the relative abundance of Prevotellaceae, Ruminococcus, Roseburia inulinivorans, and Faecalibacterium prausnitzii decreased in BC. Accordingly, the relative richness of Erysipelotrichaceae was high in BC. CONCLUSIONS: This observational meta-analysis revealed that the changes in gut microbiota were correlated with BC, and the changes in some primary fecal microbiota might affect the beginning of breast cancer.

9.
Sci Total Environ ; 912: 168972, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38043822

RESUMO

The response of the microbes to total petroleum hydrocarbons (TPHs) in three types of oilfield soils was researched using metagenomic analysis. The ranges of TPH concentrations in the grassland, abandoned well, working well soils were 1.16 × 102-3.50 × 102 mg/kg, 1.14 × 103-1.62 × 104 mg/kg, and 5.57 × 103-3.33 × 104 mg/kg, respectively. The highest concentration of n-alkanes and 16 PAHs were found in the working well soil of Shengli (SL) oilfield compared with those in Nanyang (NY) and Yanchang (YC) oilfields. The abandoned well soils showed a greater extent of petroleum biodegradation than the grassland and working well soils. Α-diversity indexes based on metagenomic taxonomy showed higher microbial diversity in grassland soils, whereas petroleum-degrading microbes Actinobacteria and Proteobacteria were more abundant in working and abandoned well soils. RDA demonstrated that low moisture content (MOI) in YC oilfield inhibited the accumulation of the petroleum-degrading microbes. Synergistic networks of functional genes and Spearman's correlation analysis showed that heavy petroleum contamination (over 2.10 × 104 mg/kg) negatively correlated with the abundance of the nitrogen fixation genes nifHK, however, in grassland soils, low petroleum content facilitated the accumulation of nitrogen fixation genes. A positive correlation was observed between the abundance of petroleum-degrading genes and denitrification genes (bphAa vs. nirD, todC vs. nirS, and nahB vs. nosZ), whereas a negative correlation was observed between alkB (alkane- degrading genes) and amo (ammonia oxidation), hao (nitrification). The ecotoxicity of petroleum contamination, coupled with petroleum hydrocarbons (PH) degradation competing with nitrifiers for ammonia inhibited ammonia oxidation and nitrification, whereas PH metabolism promoted the denitrification process. Moreover, positive correlations were observed between the abundance of amo gene and MOI, as well as between the abundance of the dissimilatory nitrate reduction gene nirA and clay content. Thus, improving the soil physicochemical properties is a promising approach for decreasing nitrogen loss and alleviating petroleum contamination in oilfield soils.


Assuntos
Petróleo , Poluentes do Solo , Petróleo/análise , Campos de Petróleo e Gás , Solo/química , Amônia/análise , Biodegradação Ambiental , Hidrocarbonetos/análise , Alcanos , Microbiologia do Solo , Poluentes do Solo/análise
10.
Environ Res ; 243: 117843, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38061588

RESUMO

BACKGROUND: The utilization of short-term natural exposure as a health intervention has great potential in the field of public health. However, previous studies have mostly focused on outdoor urban green spaces, with limited research on indoor biophilic environments, and the physiological regulatory mechanisms involved remain unclear. OBJECTIVES: To explore the affective and physiological impact of short-term exposure to indoor biophilic environments and their potential regulatory mechanisms. METHODS: A between-group design experiment was conducted, and the psychophysiological responses of participants to the indoor plants (Vicks Plant) were measured by a method combined the subjective survey, electrophysiological measurements, and salivary biochemical analysis. Volatile organic compounds (VOCs) from plants were also detected to analyze the main substances that caused olfactory stimuli. RESULTS: Compared with the non-biophilic environment, short-term exposure to the indoor biophilic environment was associated with psychological and physiological relaxation, including reduced negative emotions, improved positive emotions, lower heart rate, skin conductance level, salivary cortisol and pro-inflammatory cytokines, and increased alpha brainwave power. Salivary metabolomics analysis revealed that the differential metabolites observed between the groups exhibited enrichment in two metabolic pathways related to neural function and immune response: phenylalanine, tyrosine and tryptophan biosynthesis, and ubiquinone and other terpenoid-quinone biosynthesis. These changes may be associated with the combined visual and olfactory stimuli of the biophilic environment, in which D-limonene was the dominant substance in plant-derived VOCs. CONCLUSION: This research demonstrated the benefits of short-term exposure to indoor biophilic environments on psychophysiological health through evidence from both the nervous and endocrine systems.


Assuntos
Poluição do Ar em Ambientes Fechados , Compostos Orgânicos Voláteis , Humanos , Inquéritos e Questionários , Compostos Orgânicos Voláteis/análise , Terpenos/análise , Poluição do Ar em Ambientes Fechados/análise
11.
Anal Chem ; 95(50): 18530-18539, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38048161

RESUMO

Epilepsy is a chronic neurological disorder characterized by recurrent seizures globally, imposing a substantial burden on patients and their families. The pathological role of peroxynitrite (ONOO-), which can trigger oxidative stress, inflammation, and neuronal hyperexcitability, is critical in epilepsy. However, the development of reliable, in situ, and real-time optical imaging tools to detect ONOO- in the brain encounters some challenges related to the depth of tissue penetration, background interference, optical bleaching, and spectral overlapping. To address these limitations, we present Ir-CBM, a new one-photon and two-photon excitable and long-lived ratiometric luminescent probe designed specifically for precise detection of ONOO- in epilepsy-based on the Förster resonance energy transfer mechanism by combining an iridium(III) complex with an organic fluorophore. Ir-CBM possesses the advantages of rapid response, one-/two-photon excitation, and ratiometric luminescent imaging for monitoring the cellular levels of ONOO- and evaluating the effects of different therapeutic drugs on ONOO- in the brain of an epilepsy model rat. The development and utilization of Ir-CBM offer valuable insights into the design of ratiometric luminescent probes. Furthermore, Ir-CBM serves as a rapid imaging and screening tool for antiepileptic drugs, thereby accelerating the exploration of novel antiepileptic drug screening and improving preventive and therapeutic strategies in epilepsy research.


Assuntos
Epilepsia , Ácido Peroxinitroso , Humanos , Ratos , Animais , Transferência Ressonante de Energia de Fluorescência , Irídio , Corantes Fluorescentes , Imagem Óptica/métodos , Epilepsia/induzido quimicamente , Epilepsia/diagnóstico por imagem , Encéfalo/diagnóstico por imagem
12.
Sensors (Basel) ; 23(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37447839

RESUMO

Vehicle Ad-hoc network (VANET) can provide technical support and solutions for the construction of intelligent and efficient transportation systems, and the routing protocol directly affects the efficiency of VANET. The rapid movement of nodes and uneven density distribution affect the routing stability and data transmission efficiency in VANET. To improve the local optimality and routing loops of the path-aware greedy perimeter stateless routing protocol (PA-GPSR) in urban sparse networks, a weight-based path-aware greedy perimeter stateless routing protocol (W-PAGPSR) is proposed. The protocol is divided into two stages. Firstly, in the routing establishment stage, the node distance, reliable node density, cumulative communication duration, and node movement direction are integrated to indicate the communication reliability of the node, and the next hop node is selected using the weight greedy forwarding strategy to achieve reliable transmission of data packets. Secondly, in the routing maintenance stage, based on the data packet delivery angle and reliable node density, the next hop node is selected for forwarding using the weight perimeter forwarding strategy to achieve routing repair. The simulation results show that compared to the greedy peripheral stateless routing protocol (GPSR), for the maximum distance-minimum angle greedy peripheral stateless routing (MM-GPSR) and PA-GPSR protocols, the packet loss rate of the protocol is reduced by an average of 24.47%, 25.02%, and 14.12%, respectively; the average end-to-end delay is reduced by an average of 48.34%, 79.96%, and 21.45%, respectively; and the network throughput is increased by an average of 47.68%, 58.39%, and 20.33%, respectively. This protocol improves network throughput while reducing the average end-to-end delay and packet loss rate.


Assuntos
Algoritmos , Tecnologia sem Fio , Reprodutibilidade dos Testes , Simulação por Computador , Redes de Comunicação de Computadores
13.
Sci Rep ; 13(1): 11153, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37429909

RESUMO

Construction land development intensity is a spatial mapping of modern urbanization level, which integrally reflects urban development strategy, land use efficiency, and population carrying intensity. This article analyzed the spatial and temporal evolution of construction land development intensity using panel data of 31 provincial administrative divisions in China from 2002 to 2020, with the application of the Theil index and spatial autocorrelation. To further investigate the relationship between human activities and land development, the article used geographic detectors to analyze the influencing mechanisms. The results showed that: (1) The average intensity of construction land development of Chinese provinces from 2002 to 2020 showed a trend of "steady increase, a short decline, and then a steady increase," and there were significant differences in the characteristics of construction land development intensity changes in different regions. (2) The regional differences in construction land development intensity between provinces showed a decreasing trend. There were uneven differences among regions, with more minor regional differences in Central, South, and North China but more significant differences in Northwest, East, Southwest, and Northeast China. (3) The spatial agglomeration of construction land development intensity in the region increased initially and then decreased during the study period. The overall pattern was "small agglomeration and large dispersion." (4) Economic development factors such as GDP per land, industrial structure, and fixed asset investment completion significantly affect land development intensity. The interaction between the factors was apparent, and the effect of "1 + 1 > 2" was produced. Based on the study's results, it is suggested that scientific regional development planning, guiding inter-provincial factor flow, and rational control of land development efforts are the key to promoting sustainable regional development.

14.
Methods ; 217: 10-17, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37348825

RESUMO

Ratiometric luminescence probes have attracted widespread attention because of their self-calibration capability. However, some defects, such as small emission shift, severe spectral overlap and poor water solubility, limit their application in the field of biological imaging. In this study, a unique luminescence probe, Ru-COU, has been developed by combining tris(bipyridine)ruthenium(II) complex with coumarin derivative through a formaldehyde-responsive linker. The probe exhibited a large emission shift (Δλ > 100 nm) and good water solubility, achieving ratiometric emission responses at 505 nm and 610 nm toward formaldehyde under acidic conditions. Besides, ratiometric luminescence imaging of formaldehyde in living cells and Alzheimer disease mouse's brain slices demonstrates the potential value of Ru-COU for the diagnosis and treatment of formaldehyde related diseases.


Assuntos
Luminescência , Rutênio , Animais , Camundongos , Cumarínicos , Corantes Fluorescentes , Formaldeído , Células HeLa , Medições Luminescentes , Lisossomos , Água
15.
PLoS One ; 18(4): e0282476, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37018286

RESUMO

Land development intensity is a comprehensive indicator to measure the degree of saving and intensive land construction and economic production activities. It is also the result of the joint action of natural, social, economic, and ecological elements in land development and utilization. Scientific prediction of land development intensity has particular reference significance for future regional development planning and the formulation of reasonable land use policies. Based on the inter-provincial land development intensity and its influencing factors in China, this study applied four algorithms, XGBoost, random forest model, support vector machine, and decision tree, to simulate and predict the land development intensity, and then compared the prediction accuracy of the four algorithms, and also carried out hyperparameter adjustment and prediction accuracy verification. The results show that the model with the best prediction performance among the four algorithms is XGBoost, and its R2 and MSE between predicted and valid values are 95.66% and 0.16, respectively, which are higher than the other three models. During the training process, the learning curve of the XGBoost model exhibited low fluctuation and fast fitting. Hyperparameter tuning is crucial to exploit the model's potential. The XGBoost model has the best prediction performance with the best hyperparameter combination of max_depth:19, learning_rate: 0.47, and n_estimatiors:84. This study provides some reference significance for the simulation of land development and utilization dynamics.


Assuntos
Algoritmos , Aprendizado de Máquina , Simulação por Computador , Previsões , Algoritmo Florestas Aleatórias
16.
bioRxiv ; 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37066338

RESUMO

Nuclear pore complexes (NPCs) mediate nucleocytoplasmic transport of specific macromolecules while impeding the exchange of unsolicited material. However, key aspects of this gating mechanism remain controversial. To address this issue, we determined the nanoscopic behavior of the permeability barrier directly within yeast S. cerevisiae NPCs at transport-relevant timescales. We show that the large intrinsically disordered domains of phenylalanine-glycine repeat nucleoporins (FG Nups) exhibit highly dynamic fluctuations to create transient voids in the permeability barrier that continuously shape-shift and reseal, resembling a radial polymer brush. Together with cargo-carrying transport factors the FG domains form a feature called the central plug, which is also highly dynamic. Remarkably, NPC mutants with longer FG domains show interweaving meshwork-like behavior that attenuates nucleocytoplasmic transport in vivo. Importantly, the bona fide nanoscale NPC behaviors and morphologies are not recapitulated by in vitro FG domain hydrogels. NPCs also exclude self-assembling FG domain condensates in vivo, thereby indicating that the permeability barrier is not generated by a self-assembling phase condensate, but rather is largely a polymer brush, organized by the NPC scaffold, whose dynamic gating selectivity is strongly enhanced by the presence of transport factors.

17.
J Zhejiang Univ Sci B ; 24(4): 359-365, 2023 Apr 15.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-37056212

RESUMO

The World Health Organization (WHO) defines health as "a state of complete physical, mental and social well-being and not merely the absence of disease or infirmity" (WHO, 2017), and mental health is defined as not only the absence of mental illness, but also the presence of psychological well-being. An expanding body of evidence highlights the relationship between nature (such as urban greenspace) and health (Li et al., 2019; Flaxman et al., 2020). However, human development and subsequent effects such as climate change and epidemic disease (COVID-19) lead to altered living environments and lifestyles. Expanding cities and urban residents have inequitable access to nature, particularly in areas of greater depriv­ation, where both public and private greenspaces are less available (Feng et al., 2021). In addition, young people spend more than 80% of their time indoors due to constant use of electronic devices for work, study, and entertainment (Klepeis et al., 2001). Mobile phones, personal computers, and video-game devices have become the main means for them to release stress. Excessive use of these electronic devices may affect normal brain activity, increasing the risk of Internet addiction and producing a range of physical and mental problems (Tran et al., 2017). These signal the pressing need for scientific investigation of efficient and convenient ways to increase contact with nature, or alternatively, to better regulate emotions indoors.


Assuntos
Preferências Alimentares , Plantas Comestíveis , Adolescente , Humanos , População do Leste Asiático
18.
J Cell Biol ; 222(6)2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-36920247

RESUMO

Subcellular fractionation in combination with mass spectrometry-based proteomics is a powerful tool to study localization of key proteins in health and disease. Here we offered a reliable and rapid method for mammalian cell fractionation, tuned for such proteomic analyses. This method proves readily applicable to different cell lines in which all the cellular contents are accounted for, while maintaining nuclear and nuclear envelope integrity. We demonstrated the method's utility by quantifying the effects of a nuclear export inhibitor on nucleoplasmic and cytoplasmic proteomes.


Assuntos
Fracionamento Celular , Núcleo Celular , Proteoma , Animais , Fracionamento Celular/métodos , Linhagem Celular , Núcleo Celular/química , Mamíferos , Proteoma/análise , Proteômica/métodos , Citoplasma/química
19.
3 Biotech ; 13(2): 54, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36685319

RESUMO

This study developed a new single-tube multiplex real-time PCR method for detecting toxigenic C. difficile directly from fecal samples using tcdA, tcdB, cdtB, and internal gene tpi as targets, which could be performed on kinds of polymerase chain reaction device including point-of-care testing (POCT), with improved detection efficiency. The specificity, sensitivity, and repeatability of each gene was evaluated using 69 C. difficile isolates and 74 fecal samples. Results were compared with established PCR, qPCR, and ELISA methods. Interspecies specificity was 100% based on six common intestinal pathogens (Escherichia coli, Enterococcus Faecium, Enterococcus faecalis, Clostridium perfringens, Bacteroides fragilis, Clostridium botulinum). The lower detection limit (LDL) for tcdA, tcdB, and cdtB with pure C. difficile DNA was 101,100, and 100 copies/µL, respectively, the coefficients of variation among different experimental batches and within each experimental batch were both less than 3%, which shows that this method has strong repeatability. And the LDL of fecal DNA was 5 × 100, 5 × 103, and 5 × 102 colony-forming units (CFU)/g, respectively. In addition, the efficiency for detection of tcdA was compared with established PCR and real-time PCR methods, demonstrating high consistency (98.4%) and similar sensitivity. ELISA was used to confirm inconsistent results, which were identical with our method. The sensitivity and specificity for detecting toxigenic C. difficile in fecal samples were 96.49% and 94.12% compared with the toxigenic culture (TC). This method effectively identified the toxigenic and non-toxigenic strains with high specificity, sensitivity, and repeatability, and could reduce the false positive rate of tcdA, and accurately identify the typical Asian strain RT017, making it potentially contribute to the surveillance of CDI in China. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03434-6.

20.
Front Oncol ; 12: 929037, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36052258

RESUMO

Breast cancer is the most common female malignancy, but the mechanisms regulating gene expression leading to its development are complex. In recent years, as epigenetic research has intensified, RNA-binding proteins (RBPs) have been identified as a class of posttranscriptional regulators that can participate in regulating gene expression through the regulation of RNA stabilization and degradation, intracellular localization, alternative splicing and alternative polyadenylation, and translational control. RBPs play an important role in the development of normal mammary glands and breast cancer. Functional inactivation or abnormal expression of RBPs may be closely associated with breast cancer development. In this review, we focus on the function and regulatory mechanisms of RBPs in breast cancer, as well as the advantages and challenges of RBPs as potential diagnostic and therapeutic targets in breast cancer, and discuss the potential of RBPs in clinical treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...